
8.6 Real-time Navigation of Independent Agents Using Adaptive Roadmaps

325

Real-time Navigation of Independent Agents Using Adaptive Roadmaps

Avneesh Sud∗ Russell Gayle∗ Erik Andersen∗ Stephen Guy∗ Ming Lin∗ Dinesh Manocha∗

Dept of Computer Science, University of North Carolina at Chapel Hill

Abstract

We present a novel algorithm for navigating a large number of in-
dependent agents in complex and dynamic environments. We com-
pute adaptive roadmaps to perform global path planning for each
agent simultaneously. We take into account dynamic obstacles and
inter-agents interaction forces to continuously update the roadmap
by using a physically-based agent dynamics simulator. We also in-
troduce the notion of ‘link bands’ for resolving collisions among
multiple agents. We present efficient techniques to compute the
guiding path forces and perform lazy updates to the roadmap. In
practice, our algorithm can perform real-time navigation of hun-
dreds and thousands of human agents in indoor and outdoor scenes.

1 Introduction

Modeling of multiple agents and swarm-like behaviors has been
widely studied in virtual reality, robotics, architecture, physics, psy-
chology, social sciences, and civil and traffic engineering. Realistic
visual simulation of many avatars requires modeling of group be-
haviors, pedestrian dynamics, motion synthesis, and graphical ren-
dering. In this paper, we address the problem of real-time motion
synthesis for large-scale independent agents in complex, dynamic
virtual environments. These agents may correspond to virtual or
digital characters that consist of non-uniform distributions of many
distinct entities, each with independent behavior, characteristics,
and goals. Examples of such environments include virtual humans
in large exposition halls, avatars in wide festival arenas, digital ac-
tors in busy urban streets, etc.

Figure 1: Navigation within an indoor environment: An exhibit
hall of a trade show that consists of 511 booths and 1,000 hu-
man agents. Each agent has a distinct goal (i.e. visiting one of
the booths) and behavior characteristic. Our navigation algorithm
based on AERO can compute collision-free paths simultaneously
for all 1,000 agents at 22 fps on a PC with 3Ghz Pentium D CPU.

∗e-mail: {sud,rgayle,andersen,sjguy,lin,dm}@cs.unc.edu

A major challenge is automatic navigation of each agent through a
complex, dynamic environment. More specifically, real-time global
path computation for each agent can become a bottleneck, as the
number of independent agents in the environment increases. The
route planning problem can become intractable, as each individual
character moving independently needs to perform collision avoid-
ance with remaining agents. The problem of computing a collision-
free path has been extensively studied in robot motion planning,
crowd simulation and character animation. Prior global motion
planning algorithms are mainly limited to static environments with
a fewmoving robots. Most algorithms for dynamic scenes are based
on local collision-avoidance methods, which suffer from conver-
gence and local minima problems. Most of existing work in crowd
simulation has been applicable to only a few groups or swarms of
agents with the same goal, and not a large number of independent
agents with different intentions [Treuille et al. 2006]. Our work is
complementary to these work by addressing the navigation prob-
lem simultaneously for many virtual agents with distinct goals and
individualized behavior characteristics.

Main Results: In this paper, we present a new algorithm for real-
time navigation of large-scale heterogeneous agents in complex dy-
namic environments. Our approach is based on a novel represen-
tation called “Adaptive Elastic ROadmaps” (AERO). AERO is a
global connectivity graph that deforms based upon obstacle motion
and inter-agent interaction forces.

We use AERO to perform dynamic, global path planning simulta-
neously for independent agents. We also take into account moving
obstacles and the local dynamics among the agents. AERO contin-
uously adapts to dynamic obstacles and deforms according to local
force models and global constraints, in order to compute collision-
free paths in complex environments. In addition, we introduce the
notion of link bands to augment the local dynamics and resolve col-
lisions among multiple agents. Due to lazy and incremental updates
to the roadmap and efficient computation of guiding-path forces
using link bands, our approach can scale to hundreds and thou-
sands of individual agents and perform real-time global navigation
of many independent agents in complex, changing environments,
with generic obstacles and no restrictions on agent motion.

We demonstrate our approach on complex indoor and outdoor sce-
narios, including a city scene consisting of 2,000 pedestrians with
50 moving cars and an exhibition hall with 511 stationary booths
and 1,000 individual agents on foot and avoiding each other. In or-
der to highlight global navigation, we also place upto 1,000 agents
in a dynamic maze environment. Our initial proof-of-concept im-
plementation is able to perform motion simulation of independent
agents for these highly challenging scenes in a fraction of a second
per frame on a PC with an 3Ghz Pentium D CPU and 2GB mem-
ory. As compared to the prior approaches, our algorithm is perhaps
among the first to interactively navigate upto thousands of inde-
pendent agents each with distinct goals and individualized behavior
characteristics, by providing real-time global path planning for all
agents simultaneously and performing fast local collision avoidance
among them.

Organization: The rest of the paper is organized as follows. Sec-
tion 2 presents related work on multi-agent planning and crowd
simulation. We describe “adaptive elastic roadmaps” in Section 3
and use them to navigate multiple virtual agents simultaneously in

Section 4. We describe our implementation and highlight its perfor-
mance on different benchmarks in Section 5. We analyze the per-
formance of our algorithm and compare it with earlier approaches
in Section 6.

2 Related Work

In this section, we give a brief overview of prior work related to
multi-agent planning, character animation and crowd simulation.

2.1 Multiple Agent Planning

Extensive literature exists on path planning for multiple agents in
robot motion planning and virtual environments [LaValle 2006]. At
a broad level, these methods can be classified into global (or cen-
tralized) and local (or distributed) methods. The global paths repre-
sent the connectivity of collision-free space in terms of a graph or a
roadmap, and require search algorithms to compute a path for each
agent [Bayazit et al. 2002; Funge et al. 1999; Kamphuis and Over-
mars 2004; Lamarche and Donikian 2004; Pettre et al. 2005; Sung
et al. 2005; Sud et al. 2007]. Most roadmap based algorithms have
been designed for motion planning for a single robot in a static en-
vironment and are generated based on random sampling techniques
[LaValle 2006]. Recently, some algorithms have been proposed to
extend the roadmap-based methods to dynamic environments, mul-
tiple agents and deformable models [Gayle et al. 2005; Garaerts and
Overmars 2007; Li and Gupta 2007; Pettre et al. 2005; Rodriguez
et al. 2006; Gayle et al. 2007; Zucker et al. 2007]. However, they
have only been applied to relatively simple environments composed
of a few robots and restricted obstacles. These approaches may
not scale well to environments with a large number of independent
agents.

As compared to global methods, local methods are mostly reac-
tive style planners based on variants of potential fields [Khatib
1986]. They can handle large dynamic environments, but suf-
fer from ‘local-minima’ problems and may not be able to find a
collision-free path, when one exists [LaValle 2006]. Often these
methods do not give any kind of guarantees on their behavior. Other
route planning algorithms are based on path or roadmap modifi-
cation, which allow a specified path for an agent to move or de-
form based upon obstacle motion. These methods include Elastic
Bands [Quinlan and Khatib 1993] and Elastic Roadmaps [Yang and
Brock 2006]. Our approach bears some close resemblance to these
techniques, but AERO is lazily updated to deal with dynamic obsta-
cles and is a significant extension of these algorithms to plan paths
for multiple agents simultaneously. We will describe it in detail in
Section 4.

2.2 Crowd Dynamics and Human Agents Simula-
tion

Many different approaches have been proposed for modeling move-
ment and simulation of multiple human agents or crowds or individ-
ual pedestrians. [Ashida et al. 2001; Schreckkenberg and Sharma
2001; Shao and Terzopoulos 2005; Thalmann et al. 2006; Reynolds
2006]. They can be classified based on specificity, problem decom-
position (discrete vs continuous), stochastic vs deterministic, etc.

2.2.1 Discrete methods

Discrete methods rely on a sampling of the environment or of the
agents. Some common approaches include:

Agent-based methods: These are based on seminal work of
Reynolds [1987] and can generate fast, simple local rules that can
create visually plausible flocking behavior. Numerous extensions

have been proposed to account for social forces [Cordeiro et al.
2005], psychological models [Pelechano et al. 2005], directional
preferences [Sung et al. 2004], sociological factors [MUSSE and
Thalmann 1997], etc. Most agent-based techniques use local col-
lision avoidance techniques and cannot give any guarantees on the
correctness of global behaviors.

Cellular Automata methods: These methods model the motion
of multiple agents by solving a cellular automaton. The evolution
of the cellular automata at next time step is governed by static and
dynamic fields [Hoogendoorn et al. 2000]. While these algorithms
can capture emergent phenomena, they are not physically based.
Different techniques for collision avoidance have been developed
based on grid-based rules [Loscos et al. 2003] and behavior models
[Tu and Terzopoulos].

Particle Dynamics: Computing physical forces on each agent is
similar to N-body particle system [Schreckkenberg and Sharma
2001; Helbing et al. 2003]. Sugiyama et al. [2001] presented a
2D optimal velocity (OV) model that generalizes the 1D OV model
used for traffic flow. Our formulation is built on some of these ideas
and we elaborate them in Section 4.

2.2.2 Continuous Methods

The flow of crowds or multiple agents can be formulated as fluid
flows. At low densities crowd flow is like gases, at moderate den-
sities it resembles fluid flow, and at high densities crowd has been
compared to granular flow [Helbing et al. 2005]. Most recently, a
novel approach for crowd simulation based on continuum dynam-
ics has been proposed by Treuille et al. [2006]. We compare our
approach with these methods in Section 7.

3 AERO: Adaptive Elastic ROadmaps

In this section, we describe our representation for navigating het-
erogeneous agents. We first introduce the notation used in the rest
of the paper. Next, we give an overview of our representation and
present algorithms to compute it.

3.1 Definitions and Notation

We assume that the multiple agents are contained within a domain
D. Each agent is denoted as pi and let the environment consist of
k agents, the set of all agents is denoted A . We assume that each
agent pi has a finite radius ri, a goal position denoted gi. The dy-
namics state of each agent at time t consists of its position xi(t) and
velocity vi(t). For ease of notation, we shall not indicate the time
dependency of the simulation terms as they are implicitly defined.

In addition to agents, the environment also consists of a set of static
and dynamic obstacles. Each obstacle is denoted oi and set of ob-
stacles is denoted O . The free space, is the empty space in the
domain, and is given as D f = D \ (O ∪A). The motion of each
agent is restricted to the free space.

The unit normal vector from a point p ∈ D to an agent pi is given
by ni(p) = p−xi

‖p−xi‖ . The agent’s velocity bias field φi(p) is de-
fined as the angle between the normal to the agent and its veloc-
ity, φi(p) = cos−1(ni(p) · vi‖vi‖). Given a pair of agents (pi, p j), we
define the following: separation distance di j = ‖xi− x j‖, separa-
tion normal ni j =

xi−x j
di j
. For the sake of simplicity, we assume that

all agents have same radius, ri = r j = ra and our algorithm can be
easily modified to account for varying radii.

We use the generalized Voronoi diagrams to compute proximity in-
formation for the roadmap and link bands. A site is a geometric

primitive inR2. Given a set of sitesS , and a domainD, the Voronoi
region of a site si is denoted V (si|S), and the Voronoi diagram of
all sites is VD(S). For our work, the sites are the edges on the
roadmap, and the domain is the free space.

Multi-agent navigation problem: Given the state of each agent
pi at time t0, and goal gi, we compute a sequence of states
qi(t0),qi(t1), . . . ,qi(t f), such that xi(t f) = gi,xi(t j) ∈D f (t j) for all
i, j. Our goal is to compute a collision-free path for each agent and
ensure that its behavior conforms with prior results in pedestrian

dynamics. Each agent is also assigned a desired velocity vdi , with
the magnitude equal to the maximum velocity, vmax, of the agent
and direction determined by its state and the environment.

3.2 Global Path Planning

Our goal is to use global path planning methods that can help
each agent to reach its goal. Prior global approaches are slow in
terms of handling complex environments with hundreds of inde-
pendent agents in real-time. At the same time, local methods can
give no guarantees in terms finding a collision-free path and can
get stuck in local minima. In order to overcome these problems,
we use a novel path planning data structure called Adaptive Elas-
tic ROadmaps (AERO). AERO provides a global roadmap that is
updated instantaneously in response to motion of the agents and
obstacles in the environment.

Figure 2: Adaptive Elastic ROadmap (AERO): An example with
4 agents (red circles) and goals (yellow triangles). The static ob-
stacles are dark blue rectangles and dynamic obstacles are cyan
rectangles with arrows indicating direction of motion. The green
curves represent links of the reacting deforming roadmap. The dy-
namic obstacles represent cars. As the highlighted car (circled)
moves, the affected link in the roadmap is removed.

AERO is a time-varying roadmap, or a connectivity graph of mile-
stones (M) and links (L), R = {M ,L }, and is used to compute
the collision-free guiding path for each agent. Each milestone is a
position xi ∈ D f , and each link lab connects two milestones xa,xb
along a path (see Fig. 2). A link lab is a closed (including the end
points) curve in D f . In path planning literature, this path is often
a straight-line for simplicity. Each agent queries the roadmap to
compute a path between two configurations in D f by using a graph
search algorithm (such as A*).

3.3 Particle-based graph representation

As the agents and dynamic obstacles move, we compute and update
AERO using a physically-based particle simulator. The main com-
ponents of the graph, dynamic milestones and adaptive links, are
built from particles. Particle i, denoted mi, is a point-mass in D f
which responds to applied forces. The state of the particle at time
t is described by its position xi(t) and velocity vi(t). In the con-
nectivity graph, the dynamic milestones M are each represented
as a particle. Similarly, the adaptive links are represented using

a sequence of particles connected by linear springs. The number
of particles in each link can vary as a function of link length. As
the obstacles (which may include other agents) move, the repulsive
forces cause the milestones to move, and the links to deform toward
the open areas of the navigation domain (as shown in Fig. 2).

3.4 Applied Force Computation

We apply forces to move the milestones and links away from ob-
stacles while simultaneously maintaining the connectivity of the
roadmap. For each particle i, we consider two forces for each par-
ticle, roadmap internal forces and repulsive external forces,

Fi = Fiint+Fiext,

where Finti denotes the internal forces and F
ext
i describes external

forces.

The internal forces maintain the length of the links, and are simu-
lated using standard damped Hookean spring. Given two particles
mi and m j, the force on particle mi from an incident particle m j is
given as:

Fi
int = −(ks(‖xij‖−L)+ kd(

vij ·xij
‖xij‖

))
xij

‖xij‖
,

where xi j = xi − x j, vi j = vi − v j , ks is a spring constant, kd is
the damping constant, and L is the initial distance between the par-
ticles. To prevent the entire roadmap from drifting as a result of
moving obstacles, additional springs are attached between the dy-
namic milestones and a particle is fixed at its initial location. Note
that the dynamics milestones are not fixed - instead they are allowed
to move to avoid dynamics obstacles.

The external force is repulsive potential force from the obstacles.
For each obstacle o j, we apply a force on particle i, mi, if it is
sufficiently close to o j . This force given is:

Fi
ext =

{
b

d(mi,o j)
n if d(mi,o j) < δ ,

0 otherwise,

where d(mi,o j) is the minimum distance between a particle mi and
obstacle o j, b is a repulsive scaling constant, n is the normal from
the obstacle to the particle, and δ is a repulsive force threshold.

Given the applied forces, we update the state of AERO, the posi-
tion and velocity of all particles, using numerical integration. In
order to prevent undesirable oscillation in the adaptive links, Verlet
integration is used [Verlet 1967; Jakobsen 2001]. This method con-
siders the particles to be at rest, v(t) = 0, during integration. Based
on forward Euler integration and Newtonian motion, Fi = ma, the
update rule for particle mi with unit mass is given as:

xi(t+dt) = xi(t)+
1

2
ai(dt)2 = xi(t)+

1

2
(Fiint+Fiext)(dt)2.

Since velocity is necessary to compute Fi
int we can locally approx-

imate it as

vi(t+dt) =
xi(t+dt)−xi(t)

dt

This formulation describes how a roadmap can adapt to the motion
of obstacles. In order to compute the initial roadmap, we can use
any of the well known methods in the motion planning literature
[LaValle 2006]. In our current implementation, the initial roadmap
is generated based on edges and vertices of the generalized Voronoi
diagram of the free workspace. This provides good initial clearance
from the obstacles and captures all the passages in the environment.

Link l1

B(1)O1

O2

Link l1

Bi(1)

Bm(1)

Bm(1)

O1

O2

Link l2
Link l2

Link l1

O1

O2

B(1)

(a) (b) (c)

Figure 3: Roadmap Link Bands: Link bands are a partition of the freespace based on the links of AERO. (a) Several AERO links, in solid
black lines, respond to a static obstacle, O2 and a dynamic obstacle O1. The link band, B(1), for link l1 is shaded, and the link boundaries
are shown as dashed lines. (b) As O1 approaches link l2 it deforms. Link band B(1)’s boundary is highlighted in bold dashed lines and shows
the two segments of the milestone boundary, Bm(1), and the intermediate boundary Bi(1). (c) Link l2 is removed due O1’s motion while the
link band B(1) changes to reflect the removal.

3.5 Roadmap Update

The previous section described the general representation for
AERO and how it adjusts to moving obstacles. However, this type
of deformation can not guarantee a valid roadmap or that a path
can be found at all times, e.g. when a moving obstacle moves di-
rectly into a link. These cases require additional link removal or
link addition steps to update the roadmap.

3.5.1 Link Removal

In order to maintain a valid roadmap, we remove the links based
on both physically-based and geometric criteria. This combina-
tion works well since the roadmap computation is a combination
of physically-based and geometric approaches.

The physically-based criteria attempts to prune links which have
been considerably deformed. A natural measure of deformation
for a link is its potential energy. The spring potential energy is a
measure of the amount of deformation of a spring. For an adaptive
link lab with n springsS = {s1,s2, . . . ,sn}, the average potential is
given as

Pab =
1

n

n

∑
si∈S

kis

2
(‖si‖−Li)2

where kis is the spring constant of spring i, ‖si‖ is its current length,
and Li is its rest length. A link is removed when Pab > εs, for a
spring energy threshold εs.

The geometric criteria removes links based on proximity and inter-
section with the obstacles. Proximity is measured by the nearest
distance from an adaptive link lab to the obstacles,

dab = minsi∈S ,o j∈O(d(si,o j)).

Links are removed when this distance is less than the largest radius
assigned to an agent, i.e. dab < ra.

3.5.2 Link Addition

As the links are removed, AERO may no longer capture the con-
nectivity of the free space and maybe unable to find paths. To
remedy the situation, it is necessary to repair and add links to the
graph. Since our initial roadmap is based on Voronoi diagram, it
almost captures the connectivity of the freespace for static obsta-
cles. Based on this assumption, we can bias the link addition step
to repair links which have been previously removed. When a link is
removed, it is placed in a list and re-inserted into AERO when the

straight-line path between link’s two milestones becomes collision-
free. This has the added advantage that our roadmap will try to
maintain the connectivity of the freespace of the static environment.

However, in a realistic scenario, it may not be the case that the
static and dynamic obstacles are known ahead of time. In this case
we need the ability to add milestones to help explore the freespace
as the environment changes. In this case, we use random sampling
techniques to generate newmilestones and additional links [LaValle
2006].

We modify this approach by biasing our search toward areas behind
obstacle motion. Given the velocity vj of an obstacle o j , we gen-
erate a sample outside of the obstacle’s axis aligned bounding box

in the direction − vj
‖vj‖ from the box’s center. This sample is ran-

domly perturbed to help remove uniformity among samples, which
can lead to overly regular connectivity graphs. The milestones near
to this sample are found and checked to see if an adaptive link can
be added. Since a large number of new links can become compu-
tationally expensive, link addition is only performed when no path
exists.

3.6 Numerical Stability

Since AERO relies upon numerical integration, stability is a con-
cern due to the possibility of applying large spring or repulsive
forces. However, when combined with the removal rules, this has
not been an issue in practice. In general, using Verlet integration
greatly helps in stability by treating the particle to be at rest during
integration. Also, our link removal steps also help to ensure stabil-
ity. Any link which is likely to become unstable will also likely be
close to an obstacle or otherwise highly deformed. These types of
links will be removed, helping the system remain in a stable state.

4 Navigation using AERO

In this section we describe our approach to compute collision-free
paths for independent agents using AERO. In order to allow the
agents to occupy the entire free space for navigation, we relax the
restriction of constraining the agent’s position to the links of the
roadmap. Rather, we introduce link bands defined by each link of
AERO, and use them for path planning as well as local dynamics
simulation of each agent (See Figure 5).

4.1 Link Bands

The link band associated with a link of the roadmap is the re-
gion of free space that is closer to that link than to any other link
on the roadmap. Formally, the link band of a link li is given by
B(i) = V (li|L)∩D f . The width of the link band is the mini-
mum clearance from the link to the obstacles in the environment,
Bw(i) = mino j∈O(d(li,o j)). The link bands form a partitioning of
the free space based on proximity to the links. Each link band spec-
ifies a collision free zone in a well-defined neighborhood of each
link of the roadmap. Additionally, link bands provide the nearest
link, which is required for path search (Section 4.2), and distance
to the roadmap that is used to compute guiding forces to advance
the agent along the path (Section 4.3).

In a dynamic environment, an agent’s path might require recompu-
tation. We use link bands to detect such events. In particular we
keep track of an agent’s motion across a link band boundary. We
classify points on a link band boundary into milestone boundary
and intermediate boundary (see Fig. 3). A point on the milestone
boundary belongs to two adjacent link bands whose links share a
common milestone. On the other hand, the intermediate boundary
is all points on the boundary that do not belong to the milestone
boundary (see Fig. 3(b)). Formally, the milestone boundary of
a link li, Bm(i) = B(i)∩ B(j), ∀li ∩ l j 6= /0, and the intermediate
boundary of a link li, Bi(i) = δB(i)\Bm(i). In the next section we
show how the link bands are used for global path planning and to
detect replanning events.

4.2 Path Planning

We use AERO for global path computation for each agent. Since
an agent is not constrained to the roadmap, we initially compute the
link band it belongs to. This link is set as the source link. Similarly
the link band containing the goal position is computed and the cor-
responding link is set as the goal link. We assign a weight to each
link as a combination of the link length, the reciprocal of the link
band width, and the agent density on the link as:

w(li) =

{
∞ if 2Bw(i) < ra,

α |li|+β 1
Bw(i)

+ γ n
|li|Bw(i) otherwise,

where α ,β ,γ are constants,|li| is the length of link li, and n is the
number of agents on link B(i). The third term approximates the
agent density on the link and causes the agents to plan using less
crowded regions. The relative values of the constants are deter-
mined by the behavior characteristics of individual agents. A high
relative value of α allows for choice of shortest path, a high value
of β avoids narrow passages and a high value of γ demonstrates
preference of less crowded passages. In our experiements, we used
a high value of α for slow agents, whereas aggressive agents are
assigned a higher value of γ . Given a weighted roadmap, an A∗
graph search is performed to compute the minimum weight path
from the source to goal link band, which is stored by the agent.
Once the agent reaches its goal link band, it proceeds to its goal
position within the band.

As the simulation progresses, the nearest link to an agent may
change. Based on link boundaries, we determine events that re-
quire a path recomputation. Crossing a milestone boundary indi-
cates agent motion along the global path, and does not require a
path recomputation. However, it is also possible for an agent to
cross over the intermediate boundary. This typically occurs as a
result of roadmap modification. In this case, it is possible that an
alternative path to the goal exists. However, we allow the agent to
move back to its previous path since this should be its path of least
cost.

4.3 Local Dynamics Computation

Given a path on AERO, the motion of each agent is computed us-
ing a local dynamics model. In this section, we describe the lo-
cal dynamics model used to guide an agents along the computed
path. Our local dynamics model is based on the generalized force
model of pedestrian dynamics proposed by Helbing et al [2003].
This force model has been shown to capture emergent crowd be-
havior of multiple agents at varying densities of crowds. We define
the social force model in terms of force fields that are defined over
each link band.

We modify the social force model, to include a force Fr that guides
an agent along a link band on the roadmap. In addition, there is a
repulsive force Fsoc to the nearby agents, an attractive force Fatt to
simulate the joining behavior of groups, and a repulsive force from

dynamic obstacles Fobs. Let the agent pi belong to link band B(k),
then the force field at a point p is given as

F(p) =∑
j

[
Fsocj (p)+Fattj (p)

]
+Frk(p)+ΣoF

obs
o (p),

p j ∈ A , j 6= i,o ∈ O

where,

Fsocj (p) =Ai exp(2ra−‖p−x j‖)/Bi n j(p)(
λi+(1−λi)

1+ cos(φ j(p))
2

)
,

Fattj (p) =−C jn j(p)
Fobso (p) =Ai exp(ra−d(p,o))/Bi no(p)(

λo+(1−λo)
1+ cos(φo(p))

2

)
Frk(p) =

vdk (p)−vi
τi

+Did4(p, lk)nlk (p)

where Ai and Bi denote interaction strength and range of repul-
sive interactions andC j strength of attractive interaction, which are
culture-dependent and individual parameters. λi reflects anisotropic
character of pedestrian interaction. The obstacle force field Fobs

simulates the repulsion of the agents from other obstacles in the en-
vironment. Since the obstacles may be dynamic, we introduce an
additional anisotropic term which biases the repulsive forces along
the motion of the obstacles. This effect has also been modeled in
other approaches by creating a ‘discomfort zone’ in front of dy-
namic obstacles [Treuille et al. 2006]. For efficient computation of

repulsive force Fsoc and obstacle force Fobs, we compute forces to
agents and obstacles within a radius Bi.

The roadmap force field Frk guides the agent along the link lk. The
link band B(k) is used to define the region which is used to compute
the force field for lk. The first term in F

r
k makes the agent achieve

a desired velocity along the link, whereas the second term attracts
the agent within the link band. nlk (p) is the unit normal from point
p to the closest point on lk, d(p, lk) is the distance from p to lk. The
desired velocity vdk (p) = vmaxek(p), where ek(p) is a unit vector
field orthogonal to nlk (p). The direction of the normal is chosen
such that ek(p) points along the roadmap towards the next milestone
on an agents path. Di is a weighting term and the attractive force
term keeps an agent inside the link band, reducing toggling across
intermediate boundaries.

Figure 5: Left: Navigation of 500 virtual agents in a maze consisting of 8 entrance and 8 exit points. Center: Each agent computes an
independent path to the nearest exit using adaptive roadmaps. Right: Our local dynamics simulation framework based on link bands captures
emergent behavior of real crowds, such as forming lanes. We perform real-time navigation of 500 agents at 100fps.

Environment
(Static Obstacles,

Dynamic Obstacles,
and Agents)

Local Dynamics

Adaptive
Elastic Roadmap

Scripted Behaviors

Collision Detection

Figure 4: Navigation System: Given a description of the environ-
ment, an AERO is computed and updatehd. This is used in conjunc-
tion with our local dynamics model to simulate the motion of each
agent.

4.4 Behavior Modeling

Once the agent motion has been determined by local dynamics, this
motion needs to be animated. Behavioral modeling allows us to
translate from this motion to an animated character. To accomplish
this task, we use a minimal set of predetermined behaviors; a stop,
walk, and jog. A finite state machine is then used to transition and
switch between them, as shown in Fig.4.

Transitions between states are determined by an agent’s velocity
and predefined thresholds. When the velocity is at or very close to
zero, the agent moves to a stop state. Similarly, as the agent’s speed
increases, it transitions to a walk state and then to a jog state a
higher speeds. To prevent oscillation between states, the threshold
for increasing speeds is different than that of decreasing speeds.
This is analogous to the idea that a slow jog can be the same speed
as a fast walk.

Depending on the application, some agents are set to be more ag-
gressive by specifying a higher maximum velocity. These agents
will be more likely to be in the jogging motion in order to reach
their goals.

5 Implementation and Results

In this section we describe the implementation of our multi-agent
navigation system and highlight its performance on various envi-
ronments. We have implemented our algorithm on a PC running
Windows XP operating system, with an 3Ghz Pentium D CPU,
2GB memory and an NVIDIA 7900 GPU. We used Visual C++ 7
programming language and OpenGL as the graphics API for ren-
dering the environments. The initial Adaptive Elastic Roadmap

(AERO) for an environment is initialized by computing the Voronoi
diagram of the static obstacles in the environment. This computa-
tion helps initialize the roadmap with links that are optimally clear
of obstacles when the simulation begins. To simulate particle dy-
namics of the agents, we used a semi-implicit verlet integrator [Ver-
let 1967; Jakobsen 2001].

Proximity computations to dynamic obstacles are accelerated us-
ing a spatial hash data structure to identify the nearby objects. We
maintain a spatial hash table of all dynamic obstacles, agents and
links. Briefly, spatial hashing uses a hash function and table to com-
press and update a regular spatial decomposition. This step enables
efficient lookups and proximity computation. In addition, to accel-
erate proximity computations to static obstacles, we precompute a
discretized Voronoi diagram of the obstacles using the GPU [Sud
et al. 2006]. The discrete Voronoi diagram provides proximity in-
formation to the nearest obstacle. To get the set of all obstacles
within a given radius r, we scan the discrete Voronoi diagram (and
distance field) within a window of size r× r and check if the dis-
tance value at the discrete samples is less than r. Thus the proximity
computation is reduced to a small number of table lookups.

5.1 Benchmarks

We demonstrate our system on three complex scenarios.

• Maze: The maze scenario considers the case of multiple
agents navigating a maze. The maze has 8 entry and 8 exit
locations, and 1288 polygons. The initial roadmap consists
of 113 milestones and 281 links. By using AERO, they have
complete knowledge of how to navigate the maze despite its
complexity and thus are able to quickly move toward their
goals. See Fig. 5.

• Tradeshow: The tradeshow scenario is an indoor environ-
ment of an exhibit hall in a trade show. The exhibit consists
of 511 booths and 110K polygons. The initial roadmap con-
sists of 3996 links and 5996 milestones. Numerous agents
walk around and visit multiple booths. The goals for each
agent are updated as the agent arrives at a booth. Some agents
stop when they reach their goal in order to simulate observa-
tion of a particular point of interest. After a certain amount
of time, the agents will resume walking towards their next
goal. Also, certain booths have fixed agents whose orienta-
tion changes according to passing agents. As agents move
freely through the floor, they act as dynamic obstacles, and
update the AERO. See Fig. 7.

• City: The city scenario is an outdoor scene consisting of mul-
tiple city blocks. The model consists of 924 buildings and
235K triangles. The initial roadmap for the environment con-

sists of 4K links. The environment also consists of 50 moving
cars as dynamic obstacles. As the cars move through the ur-
ban setting, links on the path deform around the obstacles and
get invalidated. We add a higher potential in front of the cars
along their direction of motion, which decreases the proba-
bility of the agents from selecting paths in front of moving
obstacles. The environment is populated with a non-uniform
density of agents moving along the side walks or crossing the
streets. Additional behavior characteristics of each agent are
assigned at run-time. These individualized behavors includes
updating the goals, varying the maximum speed, and chang-
ing interaction range of the agents. See Fig. 6.

Demo Agents Sim Path AERO Total
Search Update Time

Maze 500 9.1 0.005 0.58 9.64
Maze 1000 31.2 0.01 0.58 31.79
Trade Show 500 8.73 3 5.5 17.23
Trade Show 1000 32.95 7 5.5 45.45
City 500 9.75 7.4 15.1 32.25
City 1000 35 13.1 15.1 63.2

Table 1: Performance on each scenario. Timings reported here
are the average simulation time per frame (step) broken down into
the time for simulating local dynamics (Sim), performing path
search (Path Search), and updating AERO on the fly (AERO Up-
date). All timings are in milliseconds.

5.2 Results

We highlight the performance of our algorithm on the complex
benchmarks. Our approach can perform real-time simulation of
crowds with up to 1,000 independent agents at interactive rates –
ranging from 16 to 104 frames per second, depending on the scene
complexity and the crowd density. Our current implementation is
unoptimized and does not make use of all optimized computations
on the GPU. The performance of our algorithm in the environments
(with different complexity) and varying number of agents is high-
lighted in Table 1.

6 Analysis and Discussion

In this section we analysis the time complexity of various stages
of our algorithm, and provide a qualitative comparison with prior
work.

6.1 Analysis

Performance of our approach depends on a number of factors. At
each time-step, AERO’s complexity is O(|M|+ |E|), or linear in
the number of particles and edges. The tasks per timestep in-
clude force computations, numerical integration, as well as path
search and roadmap maintenance. Agent motion also depends lin-
early in the number of agents, but each agent also performs a path
search, thus making the agent portion of computation complex-
ity O(|N|+ |E||N|). But, in all of these cases, the performance
scales linearly with the number of agents or the complexity of the
roadmap. Therefore, this approach should be able to scale well to a
large number of agents.

6.2 Comparison and Limitations

We compare some of the features of our approach with prior algo-
rithm and highlight some of its limitations. Our adaptive roadmap
based agent navigation algorithm is designed to perform real-time

global navigation for a large number (e.g. hundreds or thousands)
of independent or heterogeneous agents, each with different goals.
We also take into account dynamic obstacles and the local dynamics
among the agents. AERO continuously adapts to dynamic obstacles
and is used to compute collision-free paths in dynamic environ-
ments. As compared to local or potential field methods, AERO can
compute a global path for each agent. In addition, we use elastic
bands and link bands to augment the local dynamics and resolve
collisions among multiple agents. Due to lazy and incremental
updates to the roadmap and efficient computation of guiding-path
forces with link bands, this approach can scale well to hundreds or
thousands of agents.

Comparisons: Our work is complementary to several existing
works on crowd simulation and multi-agent planning. Continuum
Crowds [Treuille et al. 2006] targets navigation for a small umber
(2−5) groups of human agents, where each group consists of many
(upto thousands) agent with identical goals and behavior character-
istics. Moreover, this approach uses local collision avoidance and
its accuracy is governed by the underlying grid resolution. This
approach has not been shown to extend well to a large number of
groups or when there are challenging narrow passages in the free
space, as shown in our maze and trade show benchmarks.

Graph based approaches[Pettre et al. 2005; Lamarche and Donikian
2004; Li and Gupta 2007] use proximity graphs to capture the
connectivity of the navigable space and use it for agent coordina-
tion. However, the navigation graphs are precomputed and thus are
mainly restricted to static environments. Multi-agent Navigation
Graphs [Sud et al. 2007] efficiently compute dynamic navigation
graphs for simple agents. However, this approach is limited to a
few hundred agents and does not scale with the number of agents.
It cannot guarantees coherent and smooth paths, as shown in our
video. Corridor Maps [Garaerts and Overmars 2007] use similar
proximity ideas as link bands to define navigable space, and can
adapt to dynamic obstacles. However, corridor maps cannot easily
handle dynamic topology of the roadmap and model emergent be-
haviors like agents following each other in lanes. Local agent-based
and potential-field methods [Reynolds 1987; Shao and Terzopoulos
2005] perform well for a large number of agents and exhibit inter-
esting crowd-like behaviors, but cannot provide same guarantees in
path finding as global approaches.

Limitations: Our approach has some limitations. Our current im-
plementation address collision-free navigation of a large number of
3-DoF agents, therefore our work does not produce realistic motion
in situations where each human is modeled as a high DoF avatar.
Although AERO uses a global roadmap at each given time step
for path computation, the local dynamics formulation to update the
links can potentially result in an agent getting stuck in a local min-
imum across space-time. In other words, our work may not be able
to provide convergence guarantees or provide completeness on the
existence of a collision-free path for each agent in all environments.
Furthermore, we currently treat each agent as an individual agent
and do not exploit all the behavior-related characteristics of real
crowds such as grouping. Finally, the performance of proximity
queries is sensitive to choice of hash function parameters and theo-
retical analysis can be of potential interest for challenging scenarios
with many varying parameters.

7 Conclusion

We present a novel approach for real-time navigation of indepen-
dent agents in complex and dynamic environments. We use adap-
tive roadmaps and present efficient algorithms to update them.
These roadmaps are augmented with link bands to resolve collisions
among multiple agents. The algorithm has been applied to complex

indoor and outdoor scenes with hundreds or thousands agents and
dynamic obstacles. Our preliminary results are encouraging and the
algorithm can compute collision-free paths for each agent towards
its goal in real time.

There are many avenues for future work. First of all, we would like
to develop multi-resolution techniques to handle a very large num-
ber of agents, e.g. 10-20K independent agents at interactive rates.
Secondly, we would like to use better models for local dynamics
and behavior modeling that can result in more realistic crowd-like
behavior. Instead of its current simple model, we would like to use
higher DoF articulated models for each agent to generate more re-
alistic motion. However, this would increase the dimensionality of
the configuration space and significantly increase the compleixty of
the navigation algorithm. Finally, it may be useful to extend these
results to generate truly heterogeneous crowd behavior [Bon 1895],
using example based models to guide the simulation [Lerner et al.
2007].

Acknowledgments

This work was supported in part by Army Research Office, Na-
tional Science Foundation, RDECOM, and Intel. We would like to
acknowledge members of UNC GAMMA group for useful discus-
sions and feedback. We are also grateful to the anonymous review-
ers for their comments.

References

ASHIDA, K., LEE, S. J., ALLBECK, J., SUN, H., BADLER, N., AND METAXAS,

D. 2001. Pedestrians: Creating agent behaviors through statistical analysis of

observation data. Proc. Computer Animation.

BAYAZIT, O. B., LIEN, J.-M., AND AMATO, N. M. 2002. Better group behaviors

in complex environments with global roadmaps. Int. Conf. on the Sim. and Syn. of

Living Sys. (Alife).

BON, G. L. 1895. The Crowd: A Study of the Popular Mind. Reprint available from

Dover Publications.

CORDEIRO, O. C., BRAUN, A., SILVERIA, C. B., MUSSE, S. R., AND CAVAL-

HEIRO, G. G. 2005. Concurrency on social forces simulation model. First Inter-

national Workshop on Crowd Simulation.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive modeling: Knowledge,

reasoning and planning for intelligent characters. Proc. of ACM SIGGRAPH.

GARAERTS, R., AND OVERMARS, M. H. 2007. The corridor map method: Real-time

high-quality path planning. In ICRA, 1023–1028.

GAYLE, R., LIN, M., AND MANOCHA, D. 2005. Constraint based motion planning

of deformable robots. IEEE Conf. on Robotics and Automation.

GAYLE, R., SUD, A., LIN, M., AND MANOCHA, D. 2007. Reactive deformation

roadmaps: Motion planning of multiple robots in dynamic environments. In Proc

IEEE International Conference on Intelligent Robots and Systems.

HELBING, D., BUZNA, L., ANDWERNER, T. 2003. Self-organized pedestrian crowd

dynamics and design solutions. Traffic Forum 12.

HELBING, D., BUZNA, L., JOHANSSON, A., ANDWERNER, T. 2005. Self-organized

pedestrian crowd dynamics: experiments, simulations and design solutions. Trans-

portation science, 1–24.

HOOGENDOORN, S. P., LUDING, S., BOVY, P., SCHRECKLENBERG, M., AND

WOLF, D. 2000. Traffic and Granular Flow. Springer.

JAKOBSEN, T. 2001. Advanced character physics. In Game Developer’s Conference.

KAMPHUIS, A., AND OVERMARS, M. 2004. Finding paths for coherent groups using

clearance. Proc. of ACM SIGGRAPH / Eurographics Symposium on Computer

Animation.

KHATIB, O. 1986. Real-time obstable avoidance for manipulators and mobile robots.

IJRR 5, 1, 90–98.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowd of virtual humans: a new ap-

proach for real-time navigation in complex and structured environments. Computer

Graphics Forum 23, 3 (Sept).

LAVALLE, S. M. 2006. Planning Algorithms. Cambridge University Press (also

available at http://msl.cs.uiuc.edu/planning/).

LERNER, A., CHRYSANTHOU, Y., AND LISCHINSKI, D. 2007. Crowds by example.

Computer Graphics Forum (Proceedings of Eurographics) 26, 3.

LI, Y., AND GUPTA, K. 2007. Motion planning of multiple agents in virtual environ-

ments on parallel architectures. In ICRA, 1009–1014.

LOSCOS, C., MARCHAL, D., AND MEYER, A. 2003. Intuitive crowd behaviour

in dense urban environments using local laws. Theory and Practice of Computer

Graphics (TPCG’03).

MUSSE, S. R., AND THALMANN, D. 1997. A model of human crowd behavior:

Group inter-relationship and collision detection analysis. Computer Animation and

Simulation.

PELECHANO, N., O’BRIEN, K., SILVERMAN, B., AND BADLER, N. 2005. Crowd

simulation incorporating agent psychological models, roles and communication.

First International Workshop on Crowd Simulation.

PETTRE, J., LAUMOND, J.-P., AND THALMANN, D. 2005. A navigation graph for

real-time crowd animation on multilayered and uneven terrain. First International

Workshop on Crowd Simulation.

QUINLAN, S., AND KHATIB, O. 1993. Elastic bands: Connecting path planning and

control. Proc. of IEEE Conf. on Robotics and Automation.

REYNOLDS, C. W. 1987. Flocks, herds, and schools: A distributed behavioral model.

Comput. Graph. 21, 4, 25–34. Proc. SIGGRAPH ’87.

REYNOLDS, C. 2006. Big fast crowds on ps3. In sandbox ’06: Proceedings of the

2006 ACM SIGGRAPH symposium on Videogames, ACM Press, New York, NY,

USA, 113–121.

RODRIGUEZ, S., LIEN, J.-M., AND AMATO, N. M. 2006. Planning motion in com-

pletely deformable environments. Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA) (May).

SCHRECKKENBERG, M., AND SHARMA, S. D. 2001. Pedestrian and Evacuation

Dynamics. Springer.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedestrians. In SCA ’05:

Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer

animation, ACM Press, New York, NY, USA, 19–28.

SUD, A., GOVINDARAJU, N., GAYLE, R., AND MANOCHA, D. 2006. Interactive 3d

distance field computation using linear factorization. In Proc. ACM Symposium on

Interactive 3D Graphics and Games, 117–124.

SUD, A., ANDERSEN, E., CURTIS, S., LIN, M., AND MANOCHA, D. 2007. Real-

time path planning for virtual agents in dynamic environments. Proc. of IEEE VR.

SUGIYAMA, Y., NAKAYAMA, A., AND HASEBE, K. 2001. 2-dimensional optimal

velocity models for granular flows. In Pedestrian and Evacuation Dynamics, 155–

160.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable behaviors for crowd

simulation. Computer Graphics Forum 23, 3 (Sept).

SUNG, M., KOVAR, L., AND GLEICHER, M. 2005. Fast and accurate goal-directed

motion synthesis for crowds. Proc. of SCA 2005, 291–300.

THALMANN, D., O’SULLIVAN, C., CIECHOMSKI, P., AND DOBBYN, S. 2006. Pop-

ulating Virtual Environments with Crowds. Eurographics 2006 Tutorial Notes.

TREUILLE, A., COOPER, S., AND POPOVIC, Z. 2006. Continuum crowds. Proc. of

ACM SIGGRAPH.

TU, X., AND TERZOPOULOS, D. Artificial fishes: Physics, locomotion, perception,

behavior. In Proceedings of SIGGRAPH ’94, A. Glassner, Ed., 43–50.

VERLET, L 1967. Computer experiments on classical fluids. I. Thermodynamical

properties of Lennard-Jones molecules. Phys. Rev., 159, 98-103.

YANG, Y., AND BROCK, O. 2006. Elastic roadmaps: Globally task-consistent mo-

tion for autonomous mobile manipulation. Proceedings of Robotics: Science and

Systems (August).

ZUCKER, M., KUFFNER, J., AND BRANICKY, M. 2007. Multipartite rrts for rapid

replanning in dynamic environments. Proc. IEEE Int. Conf. on Robotics and Au-

tomation.

Figure 6: Crowd simulation in an urban landscape: A street in-
tersection in a virtual city with 924 buildings, 50 moving cars as
dynamic obstacles and 1,000 pedestrians. We show a sequence of
four snapshots of a car driving through the intersection. As the
car approaches a lane of pedestrians (top), the lane breaks (middle
two images) and the pedestrians re-route using alternate links on
the adaptive roadmap. Once the car leaves the intersection (bot-
tom) the pedestrians reform the lane using the adaptive roadmap.
We are able to perform navigation of 1,000 pedestrians in this ex-
tremely complex environment at 16fps on a 3Ghz PC.

Figure 7: Sequence of 4 snapshots from Tradeshow demo. The envi-
ronment contains 511 booths with 110K polygons. The agents move
toward different booths and avoid each other using link bands.

